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Abstract- computed tomography (CT) and cone-beam computed tomography (CBCT) have revolutionized medical imaging by providing
high-resolution, three-dimensional (3D) anatomical models for diagnostics, treatment planning, and surgical simulation. The accuracy of
these models is highly dependent on scanning parameters such as slice thickness, spatial resolution, radiation dose, voltage, exposure time,
and reconstruction algorithms. While optimized parameters can enhance image quality and segmentation accuracy, suboptimal settings may
introduce artifacts, reduce anatomical fidelity, and compromise clinical outcomes [1]. CBCT is widely used in dentistry and maxillofacial
surgery due to its lower radiation dose and high spatial resolution, whereas CT is preferred for comprehensive anatomical evaluations due
to its superior soft tissue contrast [3]. The choice of scanning parameters requires balancing image clarity and patient safety. Studies have
shown that an optimal slice thickness of 0.075-0.125 mm in CBCT and 0.5-1.25 mm in CT yields the best segmentation results [4]. Radiation
dose must also be carefully adjusted; 0.1-0.3 mSv is typically sufficient for CBCT, while 2-5 mSv is recommended for CT [5]. Voltage
settings of 80-100 kV (CBCT) and 100-120 kV (CT) help reduce beam hardening artifacts while maintaining contrast. Tube current should
range between 4-10 mA for CBCT and 50-300 mA for CT to optimize noise reduction [6]. One of the major challenges in CT imaging is the
presence of artifacts, including scatter artifacts, beam hardening artifacts, motion artifacts, and partial volume artifacts. Scatter artifacts
degrade image quality due to unintended radiation deflection and can be mitigated using anti-scatter grids and beam collimation techniques
[7]. Beam hardening artifacts, caused by differential X-ray absorption in dense structures, can be corrected using higher voltage settings
and advanced reconstruction algorithms [4]. Motion artifacts, resulting from patient movement, can be minimized by reducing exposure
time and employing motion correction software [3]. Partial volume artifacts, which affect the accuracy of tissue segmentation, can be
addressed by reducing voxel size and applying high-pass filters. Traditional artifact reduction techniques such as high-pass filters, metal
artifact reduction (MAR) algorithms, dual-energy CT (DECT), and Monte Carlo simulations have been widely implemented, but their
effectiveness is often limited [8]. Recent advancements in Artificial Intelligence (Al)-based artifact correction have introduced new, data-
driven methods that surpass conventional approaches in speed, accuracy, and adaptability [9]. This review provides a comprehensive
analysis of CT and CBCT scanning parameters and typical artifacts, summarizing the optimal settings for different clinical applications. By
refining scanning protocols and employing advanced artifact reduction techniques, the accuracy and reliability of anatomical models can
be significantly improved, ensuring better diagnostic and therapeutic outcomes [10].
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artifacts; motion artifacts; partial volume artifacts; metal artifacts; ring artifacts; noise artifacts; reconstruction algorithms; image
quality; dose optimization; artifact minimization.
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INTRODUCTION

Computed tomography (CT) and cone-beam
computed tomography (CBCT) have
revolutionized medical imaging by enabling
precise three-dimensional (3D) reconstruction of
anatomical structures. These technologies are
widely utilized in fields such as dentistry,
maxillofacial surgery, orthopedics, and radiology.
By providing detailed imaging with high spatial
resolution, CT and CBCT play an essential role in
diagnosing  conditions,  guiding  surgical
interventions, and improving patient outcomes.
However, the accuracy of 3D anatomical models
heavily depends on scanning parameters,
including spatial resolution, radiation dose, slice
thickness, and artifact minimization strategies.
The careful selection and optimization of these
parameters are crucial for achieving the best
possible image quality while ensuring patient
safety by minimizing radiation exposure.

CT imaging typically employs a fan-shaped
X-ray beam combined with a multi-row detector
array, making it highly effective for whole-body
scans and soft tissue analysis. On the other hand,
CBCT utilizes a cone-shaped X-ray beam and a
flat-panel detector, allowing for a more focused
and lower-dose imaging approach, particularly
advantageous in dental and maxillofacial
applications. Despite these benefits, both
modalities face challenges related to imaging
artifacts, which can compromise diagnostic
accuracy and treatment planning. Addressing these
challenges is crucial, as errors in image
reconstruction or segmentation can lead to
misdiagnosis and suboptimal treatment decisions.
Given the increasing reliance on imaging for
clinical decision-making, optimizing scanning
protocols is not only a technical necessity but also
a critical factor in improving healthcare outcomes
and patient safety.

I. COMPUTED TOMOGRAPHY IN
MEDICINE
Computed Tomography (CT) and Cone Beam
Computed Tomography (CBCT) are widely
utilized imaging modalities that rely on X-ray-
based techniques for producing detailed

With continuous advancements in imaging
technology, there is a growing interest in refining
scanning protocols and developing new strategies
for artifact reduction. Artificial intelligence (Al)-
driven correction techniques have emerged as
promising tools for enhancing image clarity and
segmentation accuracy.

The goal of the review is to evaluate how
scanning parameters have been selected and
justified in previous studies to improve the
accuracy of anatomical models in CT and CBCT
imaging. Across the literature, researchers have
adopted varying strategies depending on clinical
needs, anatomical regions, and equipment
capabilities. For example, authors have proposed
thinner slice thicknesses and smaller voxel sizes
for enhanced bone segmentation, while higher
voltage settings are commonly used to minimize
beam hardening artifacts in the presence of dense
structures. These parameter choices reflect efforts
to balance image clarity, segmentation accuracy,
and radiation safety. In addition to summarizing
scanning protocol decisions, this review also
examines  artifact  reduction  techniques—
particularly the growing application of Al-based
correction models. While recent studies have
demonstrated the potential of deep learning for
mitigating artifacts such as scatter, motion, and
noise, there remains considerable skepticism
regarding their clinical readiness. Many Al models
have only been validated in experimental or
retrospective settings, and their generalizability,
regulatory approval, and integration into real-
world clinical workflows remain open challenges.
As such, this review critically explores both the
reported successes and current limitations of Al-
driven approaches, with the goal of informing
future research and guiding evidence-based
decisions in medical imaging practic

anatomical images. While CT has been the
standard imaging method in medical diagnostics,
CBCT has gained prominence in dental and
maxillofacial applications due to its cost-
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effectiveness and lower radiation dose. The
fundamental differences between these modalities
lie in their scanning mechanics, acquisition
techniques, and reconstruction methods, which
influence their spatial resolution, image quality,
1.1 CT IMAGING: SCANNING
MECHANICS AND METHODS

CT imaging employs a fan-shaped X-ray
beam and a multi-row detector array that rotate
around the patient to capture multiple projections,
which are then reconstructed into cross-sectional
images. The scanning process can be performed in
helical (spiral) mode or axial (step-and-shoot)
mode. Helical CT, where the X-ray source
continuously rotates while the patient moves
through the scanner, is widely used for whole-
body imaging due to its speed and ability to
acquire volumetric data.

Axial CT, which captures individual slices
sequentially, is used when higher spatial resolution
is required, such as in brain imaging [26]. The
optimal scanning parameters for CT vary
depending on the clinical application but generally
include a slice thickness between 0.5 and 5 mm to
balance image resolution and radiation dose. The
radiation dose typically ranges from 2 to 10 mSy,
with lower doses applied for extremities and
higher doses for thoracic or abdominal imaging

1.2. CBCT IMAGING: SCANNING
MECHANICS AND METHODS

CBCT differs from CT in its scanning
mechanics, employing a cone-shaped X-ray beam
and a flat-panel detector (FPD) that captures
volumetric data in a single or limited rotational arc.
Unlike CT, which reconstructs images from
multiple slices, CBCT captures an entire 3D
dataset in a single scan, making it highly efficient
for localized imaging. This scanning technique is
particularly beneficial for dental and maxillofacial
imaging, as well as orthopedic applications where
high spatial resolution is required [25].

CBCT scanners operate at lower tube voltages,
typically between 70 and 120 kV, and use
significantly lower tube currents, ranging from 5
to 20 mA, contributing to their reduced radiation
dose. The total radiation dose for CBCT imaging

and clinical applicability. Understanding these
differences is crucial for selecting the most
appropriate imaging technique based on diagnostic
requirements and anatomical regions

[25]. The voltage applied in CT scans usually falls
between 100 and 140 kV, while the tube current
ranges from 150 to 500 mA, depending on the
patient's size and diagnostic needs.

Exposure times range from 0.5 to 2 seconds
per rotation, which enables fast image acquisition
and reduces motion artifacts. The field of view
(FOV) in CT imaging varies from 250 to 500 mm,
allowing it to accommodate a wide range of
anatomical regions, from localized studies to full-
body imaging. Reconstruction of CT images is
performed using filtered back projection (FBP) or
iterative reconstruction (IR) algorithms, with IR
being the preferred method due to its ability to
reduce noise and optimize image quality at lower
radiation doses. Advanced CT technologies, such
as dual-energy CT (DECT), enable better tissue
differentiation by acquiring images at two
different X-ray energy levels, making it
particularly useful in soft tissue imaging and
contrast-enhanced studies [27]

varies between 0.05 and 1.2 mSy, significantly
lower than CT, making it a safer option for
repeated imaging, especially in pediatric and
dental applications [24]. The slice thickness in
CBCT, determined by the voxel size, generally
ranges from 0.075 to 0.4 mm, providing high
spatial resolution essential for detailed bone
structure visualization. However, the longer
exposure times, typically between 5 and 20
seconds, can increase susceptibility to motion
artifacts compared to CT.

The field of view in CBCT varies from 50 to
250 mm, making it ideal for small anatomical
regions such as the teeth, jaw, and
temporomandibular joint but less suited for full-
body imaging. Reconstruction in CBCT is
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performed using the Feldkamp-Davis-Kress
(FDK) algorithm, optimized for cone-beam
projection data. While CBCT provides excellent
spatial resolution, its soft tissue contrast is
1.3. COMPARISON OF CT AND CBCT:
KEY DIFFERENCES IN SCANNING
MECHANICS

CT and CBCT differ significantly in their
scanning mechanics, acquisition parameters, and
reconstruction methods, each offering advantages
suited to different clinical applications. CT
employs a fan-beam X-ray system with multi-
detector arrays, enabling rapid image acquisition
and superior soft tissue contrast, making it the
preferred modality for medical imaging of the
brain, thorax, abdomen, and cardiovascular system
[26].

The ability to adjust parameters such as slice
thickness, voltage, and current allows CT to
optimize imaging for different anatomical regions,
including motion-prone structures such as the
lungs and heart. In contrast, CBCT uses a cone-
beam X-ray system that captures a volumetric
dataset in a single scan, making it particularly
advantageous for high-resolution bone imaging in
dental, maxillofacial, and orthopedic applications
[25].

CBCT also delivers a significantly lower
radiation dose than CT, making it a safer option for

significantly lower than CT due to the absence of
advanced reconstruction techniques such as
iterative reconstruction [27]

frequent imaging; however, its limited ability to
differentiate soft tissues restricts its use in broader
medical applications. Another key difference is the
reconstruction  methodology: CT  scanners
increasingly  use iterative  reconstruction
techniques to enhance image quality and reduce
radiation dose, while CBCT predominantly relies
on the Feldkamp-Davis-Kress algorithm, which
lacks the noise-reducing benefits of iterative
reconstruction [27]

Furthermore, CT scanners incorporate
advanced imaging techniques such as dual-energy
scanning, perfusion imaging, and contrast-
enhanced studies, whereas CBCT remains
primarily focused on high-resolution static
anatomical imaging. The choice between CT and
CBCT depends on clinical requirements, with CT
being the better option for soft tissue imaging and
full-body scans, while CBCT is superior for
detailed bone assessments with minimal radiation
exposure.

Table 1 Comparison of optimal scanning parameters between CT and CBCT

Parameter Optimal CBCT Values Optimal CT Values
Slice Thickness (mm) 0.075-0.125 0.5-1.25

Radiation Dose (mSv) 0.1-0.3 2-5

Voltage (kV) 80-100 100-120

Tube Current (mA) 4-10 50-300

Exposure Time (s) 3-6 5-10

Field of View (FOV) 5x5 cm (teeth), 1010 cm (jaws) 20%20 cm

Reconstruction Algorithm

Iterative Reconstruction

Iterative Reconstruction
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2. IMAGE ARTIFACTS AND
MINIMIZATION TECHNIQUES

Image artifacts are distortions in CT and
CBCT scans that degrade image quality,
compromise segmentation accuracy, and impact
diagnostic utility. These artifacts arise due to the
physical properties of X-ray interactions,
interactions with tissues and materials, limitations
in scanning geometry, and reconstruction
algorithms. While artifacts are present in all
medical imaging modalities, CBCT is particularly
prone to image degradation due to its lower
radiation dose, limited detector dynamic range,

2.1 PHYSICS-BASED ARTIFACTS

Physics-based artifacts are caused by the
fundamental interactions between X-ray photons
and matter, which lead to distortions such as beam
hardening, and scatter. Beam hardening occurs
when lower-energy X-rays are preferentially
absorbed as the beam passes through dense
structures such as bones or metal implants,
resulting in streaking, cupping, and dark bands in
the reconstructed images. This effect is more
significant in CBCT than CT because CBCT uses
a polychromatic X-ray spectrum without energy
filtering, exacerbating differential attenuation
artifacts [1].

X-ray scatter, another major source of image
degradation, occurs when X-rays deviate from
their original path due to interactions with tissues,
causing blurring and contrast reduction. Scatter is
more problematic in CBCT due to the wider X-ray

SCATTER ARTIFACTS

One of the most common types of artifacts is
scatter artifacts, which occur due to the deflection
of X-ray photons as they interact with tissue before
reaching the detector. In CBCT, this effect is more
pronounced because of the wide-angle X-ray beam
and the lack of collimation, which allows scattered
radiation to overlay the primary image, reducing
contrast and sharpness. Scatter artifacts are
particularly problematic in low-dose imaging
protocols, where scattered photons significantly
influence intensity variations. To reduce scatter
artifacts, anti-scatter grids can be used to block
scattered radiation before it reaches the detector.

and increased sensitivity to scattered X-ray
interference compared to conventional CT [1].

The presence of artifacts in CBCT can
significantly affect image interpretation and
diagnosis, making it essential to understand their
origins and implement correction techniques.
Artifacts in CT and CBCT imaging can be
classified into three main categories: patient-based
artifacts, physics-based artifacts, and scanner-
based artifacts.

beam angle and larger field of view, leading to
higher noise levels and loss of contrast [16].

Photon starvation, which occurs when X-ray
photons are completely absorbed before reaching
the detector, results in streaking artifacts in areas
of high attenuation, such as dense bones and metal
implants. Minimization techniques for physics-
based artifacts include the use of beam-hardening
correction algorithms, anti-scatter grids, bowtie
filters, and high-energy X-ray spectra in CT to
reduce differential attenuation. In CBCT, the
implementation of scattered radiation correction
techniques, Monte Carlo-based scatter modeling,
and optimized exposure parameters can improve
image quality and reduce noise [9].

Additionally, hardware beam collimators are
effective in limiting radiation spread and reducing
scattered rays. Computational techniques such as
Monte Carlo simulations have been integrated into
reconstruction algorithms to estimate and remove
scattered signals mathematically. Recent Al
advancements have introduced deep-learning-
based scatter correction methods, such as the
model developed by [6], which improved CBCT
contrast by 35% by predicting and eliminating
scattered  signals more accurately than
conventional methods.
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Figure 1: Scatter artifact [32]

BEAM HARDENING ARTIFACTS

Another significant artifact that affects CT
and CBCT imaging is beam hardening, which
occurs when low-energy X-rays are absorbed more
rapidly than higher-energy ones, leading to non-
uniform attenuation through dense structures such
as bone or metal implants. This results in dark
bands and streaks in high-density areas, causing
false intensity variations that distort anatomical
structures. Beam hardening can significantly
impact maxillofacial CBCT scans, where
segmentation errors of up to 1.5 mm have been
reported in regions affected by this artifact. A key
mitigation strategy is increasing the tube voltage
(typically 100-120 kV), which helps generate
higher-energy X-rays that penetrate tissues more
uniformly, reducing the differential absorption
effect. Another effective approach is the use of
beam hardening correction algorithms, including
Dual-Energy CT (DECT) reconstruction, which
utilizes X-rays at two different energy levels to
differentiate between materials and correct for
attenuation distortions. [11] proposed an Al-driven
dual-energy reconstruction model that
significantly reduced beam hardening streaks,
particularly in CBCT scans where conventional
correction techniques had limited success.

Figure 2: Beam hardening artifact [30]

NOISE ARTIFACTS

Noise artifacts arise when the X-ray dose is
too low, resulting in random variations in pixel
intensity that degrade image clarity. CBCT is more
prone to noise due to its lower signal-to-noise ratio
(SNR) compared to CT. Noise artifacts are
particularly problematic in low-dose imaging
protocols, such as pediatric imaging and
orthodontic CBCT scans, where radiation
exposure must be minimized. Increasing the X-ray
dose can reduce noise but at the expense of higher
radiation exposure, which is not always an ideal
solution. Al-based denoising models have shown
exceptional effectiveness in restoring lost detail
while preserving fine anatomical structures. [13]
developed an Al-powered denoising model that
improved CBCT image clarity by 60%, allowing
low-dose scans to achieve diagnostic-quality
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resolution without increasing patient radiation
exposure.

2.2. PATIENT-BASED ARTIFACTS

Patient-based artifacts arise from movement,
anatomical structure variations, and metal
implants, all of which can distort the reconstructed
images. Motion artifacts are common in both CT
and CBCT but are more pronounced in CBCT due
to longer scan times. Patient movement during
image acquisition causes blurring, streaking, or
double image formation, reducing the accuracy of
anatomical structures.

This is particularly problematic in CBCT
scans of uncooperative patients, pediatric imaging,
and cases requiring long exposure times.
Additionally, anatomical variations such as dense
bone structures, air-filled cavities, or soft tissue
changes can create attenuation mismatches,
leading to image inconsistencies. Metal artifacts,
caused by dental restorations, orthopedic implants,
or surgical hardware, introduce severe streaking
and dark bands due to beam hardening and photon
starvation [9].

Strategies to minimize patient-based artifacts
include the use of faster acquisition protocols,
motion correction algorithms, metal artifact
reduction (MAR) techniques, and patient
immobilization strategies such as bite blocks and
head stabilizers in CBCT scans.

MOTION ARTIFACTS

Motion artifacts present another major
challenge in CT and CBCT imaging, arising when
a patient moves during scanning, leading to
blurring, double edges, and streaking in
reconstructed images. This issue is particularly
severe in CBCT due to its longer scan time
compared to CT, making it more susceptible to
involuntary motion such as breathing or
swallowing. Motion artifacts are particularly
problematic in neurological imaging, dental CBCT
scans, and pediatric imaging, where patient
cooperation is difficult.

Conventional mitigation techniques include
shorter exposure times (3-6 seconds for CBCT
and 5-10 seconds for CT) and patient
immobilization techniques, such as bite blocks in

dental imaging or head restraints in neurosurgical
imaging. However, Al-based motion artifact
correction models have proven to be far more
effective. [7] introduced a real-time Al motion
correction algorithm that predicts movement
patterns and adjusts image reconstruction
dynamically, reducing motion-induced errors by
50%, thereby significantly enhancing image
clarity.

Figure 4: Motion artifact [34]

METAL AND CERAMICS ARTIFACTS

Metal artifacts are among the most visually
disruptive distortions in CT and CBCT, commonly
seen in dental, orthopedic, and neurosurgical
imaging due to metal implants, dental fillings, or
prosthetic devices. These high-density objects
absorb a large portion of the X-ray beam, leading
to streak artifacts, dark bands, and signal voids that
obscure anatomical details. The presence of metal
artifacts is particularly problematic in radiotherapy
planning, where accurate dose calculations are
crucial, and in post-surgical evaluations, where
bone healing around implants must be carefully
assessed.

One effective method for reducing metal
artifacts is increasing the tube current (mA) and
voltage (kV), which allows more X-rays to
penetrate metal objects, minimizing streaking.
Additionally, Metal Artifact Reduction (MAR)
filters and iterative reconstruction techniques have
been used to improve visualization in metal-
affected areas. [8] developed a Bayesian Metal
Artifact Reduction (b-MAR) model, which
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achieved a 70% reduction in dental implant
artifacts, enabling clearer visualization of
surrounding bone structures.

Figure 5: Metal artifacts [33]

2.3. SCANNER-BASED ARTIFACTS
Scanner-based artifacts are introduced due to
limitations in the imaging system, detector
performance, and reconstruction algorithms.
These artifacts include ring artifacts, truncation

artifacts, and limited-field-of-view (FOV) artifacts.

Ring artifacts, commonly seen in CBCT, arise
when individual  detector elements are
miscalibrated or defective, leading to circular
patterns on the reconstructed images. This issue is
less common in modern CT scanners due to better
detector calibration and iterative reconstruction
methods. Truncation artifacts occur when the
patient's anatomy extends beyond the scanner's
field of view, leading to incomplete image data
reconstruction and bright halo effects in CBCT
images. Limited-FOV artifacts are especially
problematic in CBCT, where smaller detectors
often fail to capture the full anatomical structure,
causing data loss at the image edges. Correction
strategies for scanner-based artifacts include the
use of enhanced detector calibration protocols,
deep-learning-based image correction methods,
and extended-field-of-view algorithms in CBCT to
reduce truncation effects and restore missing
image data. In CT, iterative reconstruction
techniques and optimized detector configurations
have significantly improved artifact suppression,

making scanner-based artifacts less prominent
compared to CBCT [16].
RING ARTIFACTS

Ring artifacts are another issue, particularly in
older CBCT scanners or systems with imperfect
detector calibration. These artifacts manifest as
concentric circular bands in images due to faulty
or uncalibrated detector elements, causing
consistent recording of incorrect intensity values.
This effect disrupts segmentation accuracy,
making it particularly problematic in craniofacial
reconstruction and sinus imaging. Mitigation
strategies include detector calibration techniques
and flat-field correction methods, which normalize
variations across the detector to minimize ring
formation. Al-based detector correction models,
such as those developed by [25], have further
enhanced artifact reduction by detecting and
correcting non-uniform detector response patterns.

Figure 6: Ring artifacts[31]

PARTIAL VOLUME ARTIFACTS

Another common artifact in CBCT is the
partial volume artifact, which occurs when a single
voxel contains multiple tissue types due to limited
spatial resolution. This results in blended density
values, inaccurately representing the scanned
anatomy and making it difficult to distinguish
between adjacent structures. The effect is more
severe in CBCT compared to CT, as CBCT often
has larger voxel sizes in some settings, reducing
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spatial resolution. To mitigate this issue, reducing
slice thickness can improve spatial resolution, with
optimal values ranging from 0.075-0.125 mm for
CBCT and 0.5-1.25 mm for CT. High-pass filters
have also been used to improve edge detection and
compensate for density blurring, helping to restore
image sharpness. [4] demonstrated that voxel size
reduction in CBCT significantly reduces
segmentation error, leading to more precise
anatomical modeling

2.4. AI-BASED ARTIFACT CORRECTION
IN CT AND CBCT IMAGING.

Recent  advancements in  Atrtificial
Intelligence (Al)-based artifact correction have
significantly improved image quality in CT and
CBCT. One of the most impactful techniques is
deep-learning-based scatter correction, which
reduces scatter artifacts that degrade image
contrast in CBCT. [6] introduced a CNN-based
scatter correction method that improved CBCT
contrast by 35%, demonstrating a substantial
enhancement in image clarity.

Additionally, Al-driven beam hardening
correction has become a vital tool in artifact
minimization, addressing streak artifacts caused
by low-energy X-ray absorption. Developed a
GAN-based beam hardening model that improved
soft tissue differentiation by 40%, significantly
enhancing anatomical accuracy in CBCT imaging.
Another key area where Al has made significant
advancements is real-time motion artifact
suppression. Patient movement during image
acquisition distorts image reconstruction, and
traditional correction methods often fall short. [7]
introduced an Al-powered motion correction
model that reduced motion-induced errors by 50%,
effectively restoring image quality without the
need for repeated scans. Similarly, machine
learning for metal artifact reduction (MAR) has
revolutionized how metal implants are visualized
in CBCT and CT. Metal artifacts create severe
streaking that obscures anatomical structures, but
Al models can now reconstruct missing details that
would otherwise be lost. [8] proposed b-MAR, an
Al-driven MAR technique that reduced dental
implant artifacts by 70%, making metal-dense

areas more distinguishable for diagnostic purposes.
Lastly, Al-powered noise reduction has become
essential in optimizing low-dose imaging.
Lowering radiation exposure is critical for patient
safety, but it often results in increased noise and
reduced image clarity. To combat this, developed
an Al-based denoising model that improved CBCT
image clarity by 60%, making low-dose images
comparable in quality to full-dose scans. By
integrating these Al-driven correction methods
into modern imaging workflows, CT and CBCT
scans can now achieve superior image clarity,
enhanced segmentation accuracy, and reduced
radiation exposure, making Al an indispensable
tool in medical imaging.

Despite  these  achievements, clinical
implementation of Al-based artifact correction
remains limited. Most models are evaluated in
controlled or retrospective settings, and their
performance across different scanners, patient
anatomies, and imaging protocols is not yet fully
validated. Moreover, these models often target
single artifact types, whereas clinical images
frequently contain a combination of overlapping
distortions. Regulatory approval for clinical use is
another barrier, as many Al correction algorithms
lack the necessary multi-institutional validation
and safety evaluation required for integration into
routine diagnostic workflows.

To address these limitations, future research
must focus on large-scale clinical validation across
diverse patient populations and imaging systems.
Development of hybrid Al frameworks that can
simultaneously correct for multiple artifact types
will be crucial for practical application.
Additionally, user-centered integration of Al tools
into existing clinical platforms is necessary to
facilitate adoption without disrupting established
workflows. Such advances are essential for
transitioning Al-based artifact correction from
experimental innovation to everyday clinical
reality.

2.5. IMPACT OF ARTIFACTS ON
SEGMENTATION ACCURACY
Artifacts in computed tomography (CT) and
cone-beam computed tomography (CBCT)
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imaging significantly affect the accuracy of
anatomical segmentation. Artifacts arise due to
limitations in X-ray physics, patient movement,
and the constraints of image reconstruction
algorithms. These distortions degrade the quality
of medical images, making it difficult to accurately
segment anatomical structures, particularly for
applications requiring high precision, such as
implant planning, surgical navigation, and
volumetric analysis [9].

Studies have demonstrated that the presence
of artifacts can reduce segmentation accuracy by
up to 30%, particularly in CBCT imaging, which
IS more prone to distortions due to its lower
radiation dose and detector sensitivity [10]. In the

CONCLUSIONS

The accuracy and reliability of anatomical
models derived from CT and CBCT imaging are
deeply influenced by optimized scanning
parameters. An ideal balance between image
quality and patient safety requires careful
adjustments in slice thickness, radiation dose,
voltage, exposure time, and reconstruction
algorithms. For CBCT, optimal parameters
include a slice thickness of 0.075-0.125 mm, a
radiation dose of 0.1-0.3 mSv, and a voltage range
of 80-100 kV. In contrast, CT imaging achieves
optimal results with a slice thickness of 0.5-1.25
mm, a radiation dose of 2-5 mSyv, and a voltage
range of 100-120 kV.

One of the significant challenges in CT and
CBCT imaging is the presence of artifacts, which
can severely affect segmentation accuracy and
diagnostic interpretation. Studies have shown that
artifacts can reduce segmentation accuracy by up
to 30%, with CBCT being particularly susceptible
due to its lower radiation dose and detector
sensitivity. Common artifacts such as beam
hardening, motion artifacts, scatter artifacts, and
metal artifacts must be carefully managed through
advanced correction techniques. Al-driven
approaches, including  deep-learning-based
denoising, motion correction, and metal artifact
reduction, have demonstrated substantial
improvements over conventional methods.

case of soft tissue segmentation, artifacts can cause
significant errors in boundary definition, leading
to incorrect volume calculations. For instance, in
studies evaluating maxillofacial CBCT images,
segmentation errors were found to be as high as 1.5
mm in regions affected by beam hardening and
scatter artifacts [12].

The presence of metal artifacts in dental and
orthopedic imaging can lead to inaccurate
localization of implants and bone structures,
ultimately affecting treatment planning. In
radiation therapy applications, segmentation
inaccuracies due to artifacts can result in incorrect
dose calculations, potentially impacting the
efficacy and safety of the treatment [14]

However, it is important to acknowledge that
many of these Al techniques have not yet been
widely implemented in clinical practice. While the
experimental results are promising, further
validation is needed to confirm their robustness
across different imaging scenarios. Most studies
are limited to narrow datasets or simulation-based
evaluations and have not undergone full regulatory
evaluation for routine clinical deployment.

The integration of Al in medical imaging
represents a transformative step forward in
reducing artifacts, refining segmentation accuracy,
and optimizing imaging protocols. Future
directions should prioritize clinical trials, hybrid
models that address multiple artifact types
simultaneously, and user-friendly implementation
strategies that fit within existing workflows.
Additionally, standardizing scanning parameters
and correction techniques across various clinical
settings remains a crucial step in ensuring
diagnostic consistency and safety.

By leveraging these technological innovations
and refining both scanning protocols and
correction methods, medical imaging can continue
to evolve, delivering higher precision, better
surgical planning, and safer patient care across a
wide range of medical disciplines.
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ONTUMISAIISA TAPAMETPIB CKAHYBAHHS 1151
KT I KIIKT: CUCTEMATUYHHUU OI' JIA

Muxkona Llapenko
n.tsarenko94@gmail.com
Jlapuca Kanamnikosa
doc_hom2000@yahoo.com
®dakynpTeT GioMeINYHOT iHXKeHepii
HamionaneHuii TeXHIYHUHA YHIBEpCUTET YKpaiHU
«KuiBchkuii oliTeXHIYHUN THCTUTYT iMeHi Iropst CiKOpChbKOTro».
Kuis, Ykpaina
Anomauin - xomn tomepna momoepagpis (KT) ma xonycno-npomenesa komn tomeprua momoepagis (KIIKT) pesomoyionizysanu meOuuny
gizyanizayiro, 3a6e3neuyrouu ucokomoyHi mpueumipti (3D) anamomiuni mooeni 0 OiacHOCMUKY, NIAHYEAHHS IKY8AHHI MA XIPYPeiuHol
cumynayii. Tounicms yux mooeneil 3HAYHOIO MIPOIO 3ANeNHCUMb 6I0 NApPAMEempie CKAHY8AHH:, MAKUX K MOSWUHA 3pIi3y, NPOCMopose
PO3piieHHs, 003a ONPOMIHEHHs, Hanpyad, 4ac eKCno3uyii ma ancopummu peKOHCmpyKyii.
Onmumizoeani napamempu MO*Cyms RIOGUWUMU AKICMb 300paXCeHb Ma MOYHICIb ceeMeHmayii, mooi AK HeONMUMATbHI HALAUIMY8AHHS
MOACYMb CRPUYUHAINU apme@daKmu, SHUNHCY8AMU AHAMOMIYHY MOYHICMb Ma He2amuHo snausamu Ha KiiHiuni pesyromamu. KIIKT wiupoko
BUKOPUCTOBYEMBCSL 8 CMOMAMOL02IT MaA WeLenHO-TuYesiil Xipypaii 3a80KU HUNCUIL 003I ONPOMIHEHHS. MA 6UCOKIU NPOCMOPOSIll PO30iNbHIl
30amuocmi, modi sik KT nepesasicro 3acmoco8yemucsi 015t KOMIJIEKCHOT AHAMOMIYHOT OYIHKU Yepe3 Kpauyy KOHMPACMHICMb M SIKUX MKAHUH.
Bubip napamempis ckanysanns mac 3abesnevysamu 6ananc migic wimxicmio 300pasicents ma 6e3nexoio nayicuma. Jocniodicens nokazanu,
wo onmumanvna moswuna 3pizy 0.075—0.125 mm y KIIKT ma 0.5-1.25 mm y KT 3abe3neuye naiikpawi pesyriomamu ceemenmayii. /loza
ONnpoMineHHs makodic mae bymu pemenvro ckopueosana. onsa KIKT 3azeuuaii 0ocmamuwo 0.1-0.3 m36, modi sik ona KT pexomenoosano 2—
5 m36. 3nauvenns nanpyeu 80-100 xB ona KIIKT i 100-120 kB ona KT donomaecac smenwumu apmedaxmu 3ameepOinHs npomeHs,
30epiearoyu KOHMPACcMHICb.
Ookticto 3 eonosnux npoonem y eizyanizayii KT/KIIKT € nassnicme apmegaxmis, sxnouaiouu posciloganvi apmepaxmu, apmegaxmu
3ameepOoinHs npomens, apmegdakmu pyxy ma 4acmrogi 06 'emui apmegaxmu.
Leii oenao micmumv komnaexcuuti ananiz napamempise ckanysanus KT i KIIKT, y3aeanvuioe onmumanvhi HAnaQuimy8auHs Onsl PisHUX
KATHIYHUX 3ACMOCY8atb. 3a605KU NOKPAWEHHIO NPOMOKONIE8 CKAHY8AHH MA GUKOPUCIIAHHIO CYYACHUX MemOoOié 3HUCEHHs apmepaxmie
MOJCHA 3HAYHO RIOSUWUMU TMOYHICMb | HAOIUHICMb AHAMOMIYHUX MoOelel, wo 3abe3neuums Kpauwyi Ola2HOCMUYHI Ma mepanesmuyni
pe3yrvmamu.
Knrwuoei cnosa: KT; KIIKT; mounicms cecmenmayii; napamempu CKany8auts, apmedaxmu 300pasicers,; 003a ONpOMiHeHHs, apmedarkmu
po3citosanus, apmeghakmu 3ameepOinHs NPOMEHS, apmepaxmu pyxy, Yacmkosi 00 emui apmepaxmu, memanesi apmedaxmu, Kilbyesi
apmegaxmu; wymosi apmeaxmu, areopummu peKOHCMpPYKyYii; AKICMb 300paxcenuss;, onmumizayis 003u; MIiHIMI3ayis apmeghaxmis.
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