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Abstract- computed tomography (CT) and cone-beam computed tomography (CBCT) have revolutionized medical imaging by providing 

high-resolution, three-dimensional (3D) anatomical models for diagnostics, treatment planning, and surgical simulation. The accuracy of 

these models is highly dependent on scanning parameters such as slice thickness, spatial resolution, radiation dose, voltage, exposure time, 

and reconstruction algorithms. While optimized parameters can enhance image quality and segmentation accuracy, suboptimal settings may 

introduce artifacts, reduce anatomical fidelity, and compromise clinical outcomes [1]. CBCT is widely used in dentistry and maxillofacial 

surgery due to its lower radiation dose and high spatial resolution, whereas CT is preferred for comprehensive anatomical evaluations due 

to its superior soft tissue contrast [3]. The choice of scanning parameters requires balancing image clarity and patient safety. Studies have 

shown that an optimal slice thickness of 0.075–0.125 mm in CBCT and 0.5–1.25 mm in CT yields the best segmentation results [4]. Radiation 

dose must also be carefully adjusted; 0.1–0.3 mSv is typically sufficient for CBCT, while 2–5 mSv is recommended for CT [5]. Voltage 

settings of 80–100 kV (CBCT) and 100–120 kV (CT) help reduce beam hardening artifacts while maintaining contrast. Tube current should 

range between 4–10 mA for CBCT and 50–300 mA for CT to optimize noise reduction [6]. One of the major challenges in CT imaging is the 

presence of artifacts, including scatter artifacts, beam hardening artifacts, motion artifacts, and partial volume artifacts. Scatter artifacts 

degrade image quality due to unintended radiation deflection and can be mitigated using anti-scatter grids and beam collimation techniques 

[7]. Beam hardening artifacts, caused by differential X-ray absorption in dense structures, can be corrected using higher voltage settings 

and advanced reconstruction algorithms [4]. Motion artifacts, resulting from patient movement, can be minimized by reducing exposure 

time and employing motion correction software [3]. Partial volume artifacts, which affect the accuracy of tissue segmentation, can be 

addressed by reducing voxel size and applying high-pass filters. Traditional artifact reduction techniques such as high-pass filters, metal 

artifact reduction (MAR) algorithms, dual-energy CT (DECT), and Monte Carlo simulations have been widely implemented, but their 

effectiveness is often limited [8]. Recent advancements in Artificial Intelligence (AI)-based artifact correction have introduced new, data-

driven methods that surpass conventional approaches in speed, accuracy, and adaptability [9]. This review provides a comprehensive 

analysis of CT and CBCT scanning parameters and typical artifacts, summarizing the optimal settings for different clinical applications. By 

refining scanning protocols and employing advanced artifact reduction techniques, the accuracy and reliability of anatomical models can 

be significantly improved, ensuring better diagnostic and therapeutic outcomes [10]. 

Keywords: CT; CBCT; segmentation accuracy; scanning parameters; image artifacts; radiation dose; scatter artifacts; beam hardening 

artifacts; motion artifacts; partial volume artifacts; metal artifacts; ring artifacts; noise artifacts; reconstruction algorithms; image 

quality; dose optimization; artifact minimization. 
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INTRODUCTION  

Computed tomography (CT) and cone-beam 

computed tomography (CBCT) have 

revolutionized medical imaging by enabling 

precise three-dimensional (3D) reconstruction of 

anatomical structures. These technologies are 

widely utilized in fields such as dentistry, 

maxillofacial surgery, orthopedics, and radiology. 

By providing detailed imaging with high spatial 

resolution, CT and CBCT play an essential role in 

diagnosing conditions, guiding surgical 

interventions, and improving patient outcomes. 

However, the accuracy of 3D anatomical models 

heavily depends on scanning parameters, 

including spatial resolution, radiation dose, slice 

thickness, and artifact minimization strategies. 

The careful selection and optimization of these 

parameters are crucial for achieving the best 

possible image quality while ensuring patient 

safety by minimizing radiation exposure. 

CT imaging typically employs a fan-shaped 

X-ray beam combined with a multi-row detector 

array, making it highly effective for whole-body 

scans and soft tissue analysis. On the other hand, 

CBCT utilizes a cone-shaped X-ray beam and a 

flat-panel detector, allowing for a more focused 

and lower-dose imaging approach, particularly 

advantageous in dental and maxillofacial 

applications. Despite these benefits, both 

modalities face challenges related to imaging 

artifacts, which can compromise diagnostic 

accuracy and treatment planning. Addressing these 

challenges is crucial, as errors in image 

reconstruction or segmentation can lead to 

misdiagnosis and suboptimal treatment decisions. 

Given the increasing reliance on imaging for 

clinical decision-making, optimizing scanning 

protocols is not only a technical necessity but also 

a critical factor in improving healthcare outcomes 

and patient safety. 

With continuous advancements in imaging 

technology, there is a growing interest in refining 

scanning protocols and developing new strategies 

for artifact reduction. Artificial intelligence (AI)-

driven correction techniques have emerged as 

promising tools for enhancing image clarity and 

segmentation accuracy.  

The goal of the review is to evaluate how 

scanning parameters have been selected and 

justified in previous studies to improve the 

accuracy of anatomical models in CT and CBCT 

imaging. Across the literature, researchers have 

adopted varying strategies depending on clinical 

needs, anatomical regions, and equipment 

capabilities. For example, authors have proposed 

thinner slice thicknesses and smaller voxel sizes 

for enhanced bone segmentation, while higher 

voltage settings are commonly used to minimize 

beam hardening artifacts in the presence of dense 

structures. These parameter choices reflect efforts 

to balance image clarity, segmentation accuracy, 

and radiation safety. In addition to summarizing 

scanning protocol decisions, this review also 

examines artifact reduction techniques—

particularly the growing application of AI-based 

correction models. While recent studies have 

demonstrated the potential of deep learning for 

mitigating artifacts such as scatter, motion, and 

noise, there remains considerable skepticism 

regarding their clinical readiness. Many AI models 

have only been validated in experimental or 

retrospective settings, and their generalizability, 

regulatory approval, and integration into real-

world clinical workflows remain open challenges. 

As such, this review critically explores both the 

reported successes and current limitations of AI-

driven approaches, with the goal of informing 

future research and guiding evidence-based 

decisions in medical imaging practic

 

I. COMPUTED TOMOGRAPHY IN 

MEDICINE 

 

Computed Tomography (CT) and Cone Beam 

Computed Tomography (CBCT) are widely 

utilized imaging modalities that rely on X-ray-

based techniques for producing detailed 

anatomical images. While CT has been the 

standard imaging method in medical diagnostics, 

CBCT has gained prominence in dental and 

maxillofacial applications due to its cost-
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effectiveness and lower radiation dose. The 

fundamental differences between these modalities 

lie in their scanning mechanics, acquisition 

techniques, and reconstruction methods, which 

influence their spatial resolution, image quality, 

and clinical applicability. Understanding these 

differences is crucial for selecting the most 

appropriate imaging technique based on diagnostic 

requirements and anatomical regions

1.1 CT IMAGING: SCANNING 

MECHANICS AND METHODS

CT imaging employs a fan-shaped X-ray 

beam and a multi-row detector array that rotate 

around the patient to capture multiple projections, 

which are then reconstructed into cross-sectional 

images. The scanning process can be performed in 

helical (spiral) mode or axial (step-and-shoot) 

mode. Helical CT, where the X-ray source 

continuously rotates while the patient moves 

through the scanner, is widely used for whole-

body imaging due to its speed and ability to 

acquire volumetric data.  

Axial CT, which captures individual slices 

sequentially, is used when higher spatial resolution 

is required, such as in brain imaging [26]. The 

optimal scanning parameters for CT vary 

depending on the clinical application but generally 

include a slice thickness between 0.5 and 5 mm to 

balance image resolution and radiation dose. The 

radiation dose typically ranges from 2 to 10 mSv, 

with lower doses applied for extremities and 

higher doses for thoracic or abdominal imaging 

[25]. The voltage applied in CT scans usually falls 

between 100 and 140 kV, while the tube current 

ranges from 150 to 500 mA, depending on the 

patient's size and diagnostic needs.  

Exposure times range from 0.5 to 2 seconds 

per rotation, which enables fast image acquisition 

and reduces motion artifacts. The field of view 

(FOV) in CT imaging varies from 250 to 500 mm, 

allowing it to accommodate a wide range of 

anatomical regions, from localized studies to full-

body imaging. Reconstruction of CT images is 

performed using filtered back projection (FBP) or 

iterative reconstruction (IR) algorithms, with IR 

being the preferred method due to its ability to 

reduce noise and optimize image quality at lower 

radiation doses. Advanced CT technologies, such 

as dual-energy CT (DECT), enable better tissue 

differentiation by acquiring images at two 

different X-ray energy levels, making it 

particularly useful in soft tissue imaging and 

contrast-enhanced studies [27]

.

1.2. CBCT IMAGING: SCANNING 

MECHANICS AND METHODS 

 

CBCT differs from CT in its scanning 

mechanics, employing a cone-shaped X-ray beam 

and a flat-panel detector (FPD) that captures 

volumetric data in a single or limited rotational arc. 

Unlike CT, which reconstructs images from 

multiple slices, CBCT captures an entire 3D 

dataset in a single scan, making it highly efficient 

for localized imaging. This scanning technique is 

particularly beneficial for dental and maxillofacial 

imaging, as well as orthopedic applications where 

high spatial resolution is required [25].  

CBCT scanners operate at lower tube voltages, 

typically between 70 and 120 kV, and use 

significantly lower tube currents, ranging from 5 

to 20 mA, contributing to their reduced radiation 

dose. The total radiation dose for CBCT imaging 

varies between 0.05 and 1.2 mSv, significantly 

lower than CT, making it a safer option for 

repeated imaging, especially in pediatric and 

dental applications [24]. The slice thickness in 

CBCT, determined by the voxel size, generally 

ranges from 0.075 to 0.4 mm, providing high 

spatial resolution essential for detailed bone 

structure visualization. However, the longer 

exposure times, typically between 5 and 20 

seconds, can increase susceptibility to motion 

artifacts compared to CT.  

The field of view in CBCT varies from 50 to 

250 mm, making it ideal for small anatomical 

regions such as the teeth, jaw, and 

temporomandibular joint but less suited for full-

body imaging. Reconstruction in CBCT is 
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performed using the Feldkamp-Davis-Kress 

(FDK) algorithm, optimized for cone-beam 

projection data. While CBCT provides excellent 

spatial resolution, its soft tissue contrast is 

significantly lower than CT due to the absence of 

advanced reconstruction techniques such as 

iterative reconstruction [27] 

1.3. COMPARISON OF CT AND CBCT: 

KEY DIFFERENCES IN SCANNING 

MECHANICS 

CT and CBCT differ significantly in their 

scanning mechanics, acquisition parameters, and 

reconstruction methods, each offering advantages 

suited to different clinical applications. CT 

employs a fan-beam X-ray system with multi-

detector arrays, enabling rapid image acquisition 

and superior soft tissue contrast, making it the 

preferred modality for medical imaging of the 

brain, thorax, abdomen, and cardiovascular system 

[26]. 

The ability to adjust parameters such as slice 

thickness, voltage, and current allows CT to 

optimize imaging for different anatomical regions, 

including motion-prone structures such as the 

lungs and heart. In contrast, CBCT uses a cone-

beam X-ray system that captures a volumetric 

dataset in a single scan, making it particularly 

advantageous for high-resolution bone imaging in 

dental, maxillofacial, and orthopedic applications 

[25].  

CBCT also delivers a significantly lower 

radiation dose than CT, making it a safer option for 

frequent imaging; however, its limited ability to 

differentiate soft tissues restricts its use in broader 

medical applications. Another key difference is the 

reconstruction methodology: CT scanners 

increasingly use iterative reconstruction 

techniques to enhance image quality and reduce 

radiation dose, while CBCT predominantly relies 

on the Feldkamp-Davis-Kress algorithm, which 

lacks the noise-reducing benefits of iterative 

reconstruction [27]  

Furthermore, CT scanners incorporate 

advanced imaging techniques such as dual-energy 

scanning, perfusion imaging, and contrast-

enhanced studies, whereas CBCT remains 

primarily focused on high-resolution static 

anatomical imaging. The choice between CT and 

CBCT depends on clinical requirements, with CT 

being the better option for soft tissue imaging and 

full-body scans, while CBCT is superior for 

detailed bone assessments with minimal radiation 

exposure. 

 

 

Table 1 Comparison of optimal scanning parameters between CT and CBCT 

 
Parameter Optimal CBCT Values Optimal CT Values 

Slice Thickness (mm) 0.075–0.125 0.5–1.25 

Radiation Dose (mSv) 0.1–0.3 2–5 

Voltage (kV) 80–100 100–120 

Tube Current (mA) 4–10 50–300 

Exposure Time (s) 3–6 5–10 

Field of View (FOV) 5×5 cm (teeth), 10×10 cm (jaws) 20×20 cm 

Reconstruction Algorithm Iterative Reconstruction Iterative Reconstruction 

 

 

 

 

 



Biomedical Engineering and Technology                                                          

Issue 17(1), 2025                                                 ISSN (Online) 2707-8434 

 

 

2. IMAGE ARTIFACTS AND 

MINIMIZATION TECHNIQUES

Image artifacts are distortions in CT and 

CBCT scans that degrade image quality, 

compromise segmentation accuracy, and impact 

diagnostic utility. These artifacts arise due to the 

physical properties of X-ray interactions, 

interactions with tissues and materials, limitations 

in scanning geometry, and reconstruction 

algorithms. While artifacts are present in all 

medical imaging modalities, CBCT is particularly 

prone to image degradation due to its lower 

radiation dose, limited detector dynamic range, 

and increased sensitivity to scattered X-ray 

interference compared to conventional CT [1].  

The presence of artifacts in CBCT can 

significantly affect image interpretation and 

diagnosis, making it essential to understand their 

origins and implement correction techniques. 

Artifacts in CT and CBCT imaging can be 

classified into three main categories: patient-based 

artifacts, physics-based artifacts, and scanner-

based artifacts. 

 

2.1 PHYSICS-BASED ARTIFACTS 

Physics-based artifacts are caused by the 

fundamental interactions between X-ray photons 

and matter, which lead to distortions such as beam 

hardening, and scatter. Beam hardening occurs 

when lower-energy X-rays are preferentially 

absorbed as the beam passes through dense 

structures such as bones or metal implants, 

resulting in streaking, cupping, and dark bands in 

the reconstructed images. This effect is more 

significant in CBCT than CT because CBCT uses 

a polychromatic X-ray spectrum without energy 

filtering, exacerbating differential attenuation 

artifacts [1].  

X-ray scatter, another major source of image 

degradation, occurs when X-rays deviate from 

their original path due to interactions with tissues, 

causing blurring and contrast reduction. Scatter is 

more problematic in CBCT due to the wider X-ray 

beam angle and larger field of view, leading to 

higher noise levels and loss of contrast [16].  

Photon starvation, which occurs when X-ray 

photons are completely absorbed before reaching 

the detector, results in streaking artifacts in areas 

of high attenuation, such as dense bones and metal 

implants. Minimization techniques for physics-

based artifacts include the use of beam-hardening 

correction algorithms, anti-scatter grids, bowtie 

filters, and high-energy X-ray spectra in CT to 

reduce differential attenuation. In CBCT, the 

implementation of scattered radiation correction 

techniques, Monte Carlo-based scatter modeling, 

and optimized exposure parameters can improve 

image quality and reduce noise [9]. 

 

 

 

 

SCATTER ARTIFACTS 

One of the most common types of artifacts is 

scatter artifacts, which occur due to the deflection 

of X-ray photons as they interact with tissue before 

reaching the detector. In CBCT, this effect is more 

pronounced because of the wide-angle X-ray beam 

and the lack of collimation, which allows scattered 

radiation to overlay the primary image, reducing 

contrast and sharpness. Scatter artifacts are 

particularly problematic in low-dose imaging 

protocols, where scattered photons significantly 

influence intensity variations. To reduce scatter 

artifacts, anti-scatter grids can be used to block 

scattered radiation before it reaches the detector. 

Additionally, hardware beam collimators are 

effective in limiting radiation spread and reducing 

scattered rays. Computational techniques such as 

Monte Carlo simulations have been integrated into 

reconstruction algorithms to estimate and remove 

scattered signals mathematically. Recent AI 

advancements have introduced deep-learning-

based scatter correction methods, such as the 

model developed by [6], which improved CBCT 

contrast by 35% by predicting and eliminating 

scattered signals more accurately than 

conventional methods.  
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Figure 1: Scatter artifact [32] 

 

BEAM HARDENING ARTIFACTS

Another significant artifact that affects CT 

and CBCT imaging is beam hardening, which 

occurs when low-energy X-rays are absorbed more 

rapidly than higher-energy ones, leading to non-

uniform attenuation through dense structures such 

as bone or metal implants. This results in dark 

bands and streaks in high-density areas, causing 

false intensity variations that distort anatomical 

structures. Beam hardening can significantly 

impact maxillofacial CBCT scans, where 

segmentation errors of up to 1.5 mm have been 

reported in regions affected by this artifact. A key 

mitigation strategy is increasing the tube voltage 

(typically 100–120 kV), which helps generate 

higher-energy X-rays that penetrate tissues more 

uniformly, reducing the differential absorption 

effect. Another effective approach is the use of 

beam hardening correction algorithms, including 

Dual-Energy CT (DECT) reconstruction, which 

utilizes X-rays at two different energy levels to 

differentiate between materials and correct for 

attenuation distortions. [11] proposed an AI-driven 

dual-energy reconstruction model that 

significantly reduced beam hardening streaks, 

particularly in CBCT scans where conventional 

correction techniques had limited success. 

 
 

Figure 2: Beam hardening artifact [30] 

 

NOISE ARTIFACTS 

Noise artifacts arise when the X-ray dose is 

too low, resulting in random variations in pixel 

intensity that degrade image clarity. CBCT is more 

prone to noise due to its lower signal-to-noise ratio 

(SNR) compared to CT. Noise artifacts are 

particularly problematic in low-dose imaging 

protocols, such as pediatric imaging and 

orthodontic CBCT scans, where radiation 

exposure must be minimized. Increasing the X-ray 

dose can reduce noise but at the expense of higher 

radiation exposure, which is not always an ideal 

solution. AI-based denoising models have shown 

exceptional effectiveness in restoring lost detail 

while preserving fine anatomical structures. [13] 

developed an AI-powered denoising model that 

improved CBCT image clarity by 60%, allowing 

low-dose scans to achieve diagnostic-quality 
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resolution without increasing patient radiation 

exposure. 

2.2. PATIENT-BASED ARTIFACTS 

Patient-based artifacts arise from movement, 

anatomical structure variations, and metal 

implants, all of which can distort the reconstructed 

images. Motion artifacts are common in both CT 

and CBCT but are more pronounced in CBCT due 

to longer scan times. Patient movement during 

image acquisition causes blurring, streaking, or 

double image formation, reducing the accuracy of 

anatomical structures.  

This is particularly problematic in CBCT 

scans of uncooperative patients, pediatric imaging, 

and cases requiring long exposure times. 

Additionally, anatomical variations such as dense 

bone structures, air-filled cavities, or soft tissue 

changes can create attenuation mismatches, 

leading to image inconsistencies. Metal artifacts, 

caused by dental restorations, orthopedic implants, 

or surgical hardware, introduce severe streaking 

and dark bands due to beam hardening and photon 

starvation [9].  

Strategies to minimize patient-based artifacts 

include the use of faster acquisition protocols, 

motion correction algorithms, metal artifact 

reduction (MAR) techniques, and patient 

immobilization strategies such as bite blocks and 

head stabilizers in CBCT scans. 

 

MOTION ARTIFACTS  

Motion artifacts present another major 

challenge in CT and CBCT imaging, arising when 

a patient moves during scanning, leading to 

blurring, double edges, and streaking in 

reconstructed images. This issue is particularly 

severe in CBCT due to its longer scan time 

compared to CT, making it more susceptible to 

involuntary motion such as breathing or 

swallowing. Motion artifacts are particularly 

problematic in neurological imaging, dental CBCT 

scans, and pediatric imaging, where patient 

cooperation is difficult.  

Conventional mitigation techniques include 

shorter exposure times (3–6 seconds for CBCT 

and 5–10 seconds for CT) and patient 

immobilization techniques, such as bite blocks in 

dental imaging or head restraints in neurosurgical 

imaging. However, AI-based motion artifact 

correction models have proven to be far more 

effective. [7] introduced a real-time AI motion 

correction algorithm that predicts movement 

patterns and adjusts image reconstruction 

dynamically, reducing motion-induced errors by 

50%, thereby significantly enhancing image 

clarity. 

 
Figure 4: Motion artifact [34]  

 

METAL AND CERAMICS ARTIFACTS 

Metal artifacts are among the most visually 

disruptive distortions in CT and CBCT, commonly 

seen in dental, orthopedic, and neurosurgical 

imaging due to metal implants, dental fillings, or 

prosthetic devices. These high-density objects 

absorb a large portion of the X-ray beam, leading 

to streak artifacts, dark bands, and signal voids that 

obscure anatomical details. The presence of metal 

artifacts is particularly problematic in radiotherapy 

planning, where accurate dose calculations are 

crucial, and in post-surgical evaluations, where 

bone healing around implants must be carefully 

assessed.  

One effective method for reducing metal 

artifacts is increasing the tube current (mA) and 

voltage (kV), which allows more X-rays to 

penetrate metal objects, minimizing streaking. 

Additionally, Metal Artifact Reduction (MAR) 

filters and iterative reconstruction techniques have 

been used to improve visualization in metal-

affected areas. [8] developed a Bayesian Metal 

Artifact Reduction (b-MAR) model, which 
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achieved a 70% reduction in dental implant 

artifacts, enabling clearer visualization of 

surrounding bone structures. 

 
Figure 5: Metal artifacts [33]  

 

 

2.3. SCANNER-BASED ARTIFACTS 

Scanner-based artifacts are introduced due to 

limitations in the imaging system, detector 

performance, and reconstruction algorithms. 

These artifacts include ring artifacts, truncation 

artifacts, and limited-field-of-view (FOV) artifacts. 

Ring artifacts, commonly seen in CBCT, arise 

when individual detector elements are 

miscalibrated or defective, leading to circular 

patterns on the reconstructed images. This issue is 

less common in modern CT scanners due to better 

detector calibration and iterative reconstruction 

methods. Truncation artifacts occur when the 

patient's anatomy extends beyond the scanner's 

field of view, leading to incomplete image data 

reconstruction and bright halo effects in CBCT 

images. Limited-FOV artifacts are especially 

problematic in CBCT, where smaller detectors 

often fail to capture the full anatomical structure, 

causing data loss at the image edges. Correction 

strategies for scanner-based artifacts include the 

use of enhanced detector calibration protocols, 

deep-learning-based image correction methods, 

and extended-field-of-view algorithms in CBCT to 

reduce truncation effects and restore missing 

image data. In CT, iterative reconstruction 

techniques and optimized detector configurations 

have significantly improved artifact suppression, 

making scanner-based artifacts less prominent 

compared to CBCT [16]. 

RING ARTIFACTS 

Ring artifacts are another issue, particularly in 

older CBCT scanners or systems with imperfect 

detector calibration. These artifacts manifest as 

concentric circular bands in images due to faulty 

or uncalibrated detector elements, causing 

consistent recording of incorrect intensity values. 

This effect disrupts segmentation accuracy, 

making it particularly problematic in craniofacial 

reconstruction and sinus imaging. Mitigation 

strategies include detector calibration techniques 

and flat-field correction methods, which normalize 

variations across the detector to minimize ring 

formation. AI-based detector correction models, 

such as those developed by [25], have further 

enhanced artifact reduction by detecting and 

correcting non-uniform detector response patterns. 

 
Figure 6: Ring artifacts[31] 

 

PARTIAL VOLUME ARTIFACTS 

Another common artifact in CBCT is the 

partial volume artifact, which occurs when a single 

voxel contains multiple tissue types due to limited 

spatial resolution. This results in blended density 

values, inaccurately representing the scanned 

anatomy and making it difficult to distinguish 

between adjacent structures. The effect is more 

severe in CBCT compared to CT, as CBCT often 

has larger voxel sizes in some settings, reducing 
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spatial resolution. To mitigate this issue, reducing 

slice thickness can improve spatial resolution, with 

optimal values ranging from 0.075–0.125 mm for 

CBCT and 0.5–1.25 mm for CT. High-pass filters 

have also been used to improve edge detection and 

compensate for density blurring, helping to restore 

image sharpness. [4] demonstrated that voxel size 

reduction in CBCT significantly reduces 

segmentation error, leading to more precise 

anatomical modeling 

 

2.4. AI-BASED ARTIFACT CORRECTION 

IN CT AND CBCT IMAGING. 

Recent advancements in Artificial 

Intelligence (AI)-based artifact correction have 

significantly improved image quality in CT and 

CBCT. One of the most impactful techniques is 

deep-learning-based scatter correction, which 

reduces scatter artifacts that degrade image 

contrast in CBCT. [6] introduced a CNN-based 

scatter correction method that improved CBCT 

contrast by 35%, demonstrating a substantial 

enhancement in image clarity.  

Additionally, AI-driven beam hardening 

correction has become a vital tool in artifact 

minimization, addressing streak artifacts caused 

by low-energy X-ray absorption. Developed a 

GAN-based beam hardening model that improved 

soft tissue differentiation by 40%, significantly 

enhancing anatomical accuracy in CBCT imaging. 

Another key area where AI has made significant 

advancements is real-time motion artifact 

suppression. Patient movement during image 

acquisition distorts image reconstruction, and 

traditional correction methods often fall short. [7] 

introduced an AI-powered motion correction 

model that reduced motion-induced errors by 50%, 

effectively restoring image quality without the 

need for repeated scans. Similarly, machine 

learning for metal artifact reduction (MAR) has 

revolutionized how metal implants are visualized 

in CBCT and CT. Metal artifacts create severe 

streaking that obscures anatomical structures, but 

AI models can now reconstruct missing details that 

would otherwise be lost. [8] proposed b-MAR, an 

AI-driven MAR technique that reduced dental 

implant artifacts by 70%, making metal-dense 

areas more distinguishable for diagnostic purposes. 

Lastly, AI-powered noise reduction has become 

essential in optimizing low-dose imaging. 

Lowering radiation exposure is critical for patient 

safety, but it often results in increased noise and 

reduced image clarity. To combat this, developed 

an AI-based denoising model that improved CBCT 

image clarity by 60%, making low-dose images 

comparable in quality to full-dose scans. By 

integrating these AI-driven correction methods 

into modern imaging workflows, CT and CBCT 

scans can now achieve superior image clarity, 

enhanced segmentation accuracy, and reduced 

radiation exposure, making AI an indispensable 

tool in medical imaging.  

Despite these achievements, clinical 

implementation of AI-based artifact correction 

remains limited. Most models are evaluated in 

controlled or retrospective settings, and their 

performance across different scanners, patient 

anatomies, and imaging protocols is not yet fully 

validated. Moreover, these models often target 

single artifact types, whereas clinical images 

frequently contain a combination of overlapping 

distortions. Regulatory approval for clinical use is 

another barrier, as many AI correction algorithms 

lack the necessary multi-institutional validation 

and safety evaluation required for integration into 

routine diagnostic workflows. 

To address these limitations, future research 

must focus on large-scale clinical validation across 

diverse patient populations and imaging systems. 

Development of hybrid AI frameworks that can 

simultaneously correct for multiple artifact types 

will be crucial for practical application. 

Additionally, user-centered integration of AI tools 

into existing clinical platforms is necessary to 

facilitate adoption without disrupting established 

workflows. Such advances are essential for 

transitioning AI-based artifact correction from 

experimental innovation to everyday clinical 

reality. 

 

2.5. IMPACT OF ARTIFACTS ON 

SEGMENTATION ACCURACY 

Artifacts in computed tomography (CT) and 

cone-beam computed tomography (CBCT) 
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imaging significantly affect the accuracy of 

anatomical segmentation. Artifacts arise due to 

limitations in X-ray physics, patient movement, 

and the constraints of image reconstruction 

algorithms. These distortions degrade the quality 

of medical images, making it difficult to accurately 

segment anatomical structures, particularly for 

applications requiring high precision, such as 

implant planning, surgical navigation, and 

volumetric analysis [9].  

Studies have demonstrated that the presence 

of artifacts can reduce segmentation accuracy by 

up to 30%, particularly in CBCT imaging, which 

is more prone to distortions due to its lower 

radiation dose and detector sensitivity [10]. In the 

case of soft tissue segmentation, artifacts can cause 

significant errors in boundary definition, leading 

to incorrect volume calculations. For instance, in 

studies evaluating maxillofacial CBCT images, 

segmentation errors were found to be as high as 1.5 

mm in regions affected by beam hardening and 

scatter artifacts [12]. 

The presence of metal artifacts in dental and 

orthopedic imaging can lead to inaccurate 

localization of implants and bone structures, 

ultimately affecting treatment planning. In 

radiation therapy applications, segmentation 

inaccuracies due to artifacts can result in incorrect 

dose calculations, potentially impacting the 

efficacy and safety of the treatment [14]

CONCLUSIONS 

The accuracy and reliability of anatomical 

models derived from CT and CBCT imaging are 

deeply influenced by optimized scanning 

parameters. An ideal balance between image 

quality and patient safety requires careful 

adjustments in slice thickness, radiation dose, 

voltage, exposure time, and reconstruction 

algorithms. For CBCT, optimal parameters 

include a slice thickness of 0.075–0.125 mm, a 

radiation dose of 0.1–0.3 mSv, and a voltage range 

of 80–100 kV. In contrast, CT imaging achieves 

optimal results with a slice thickness of 0.5–1.25 

mm, a radiation dose of 2–5 mSv, and a voltage 

range of 100–120 kV. 

One of the significant challenges in CT and 

CBCT imaging is the presence of artifacts, which 

can severely affect segmentation accuracy and 

diagnostic interpretation. Studies have shown that 

artifacts can reduce segmentation accuracy by up 

to 30%, with CBCT being particularly susceptible 

due to its lower radiation dose and detector 

sensitivity. Common artifacts such as beam 

hardening, motion artifacts, scatter artifacts, and 

metal artifacts must be carefully managed through 

advanced correction techniques. AI-driven 

approaches, including deep-learning-based 

denoising, motion correction, and metal artifact 

reduction, have demonstrated substantial 

improvements over conventional methods. 

However, it is important to acknowledge that 

many of these AI techniques have not yet been 

widely implemented in clinical practice. While the 

experimental results are promising, further 

validation is needed to confirm their robustness 

across different imaging scenarios. Most studies 

are limited to narrow datasets or simulation-based 

evaluations and have not undergone full regulatory 

evaluation for routine clinical deployment.  

The integration of AI in medical imaging 

represents a transformative step forward in 

reducing artifacts, refining segmentation accuracy, 

and optimizing imaging protocols. Future 

directions should prioritize clinical trials, hybrid 

models that address multiple artifact types 

simultaneously, and user-friendly implementation 

strategies that fit within existing workflows. 

Additionally, standardizing scanning parameters 

and correction techniques across various clinical 

settings remains a crucial step in ensuring 

diagnostic consistency and safety. 

By leveraging these technological innovations 

and refining both scanning protocols and 

correction methods, medical imaging can continue 

to evolve, delivering higher precision, better 

surgical planning, and safer patient care across a 

wide range of medical disciplines.
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Київ, Україна 
Анотація - комп’ютерна томографія (КТ) та конусно-променева комп’ютерна томографія (КПКТ) революціонізували медичну 

візуалізацію, забезпечуючи високоточні тривимірні (3D) анатомічні моделі для діагностики, планування лікування та хірургічної 

симуляції. Точність цих моделей значною мірою залежить від параметрів сканування, таких як товщина зрізу, просторове 

розрішення, доза опромінення, напруга, час експозиції та алгоритми реконструкції. 

Оптимізовані параметри можуть підвищити якість зображень та точність сегментації, тоді як неоптимальні налаштування 

можуть спричиняти артефакти, знижувати анатомічну точність та негативно впливати на клінічні результати. КПКТ широко 

використовується в стоматології та щелепно-лицевій хірургії завдяки нижчій дозі опромінення та високій просторовій роздільній 

здатності, тоді як КТ переважно застосовується для комплексної анатомічної оцінки через кращу контрастність м’яких тканин. 

Вибір параметрів сканування має забезпечувати баланс між чіткістю зображення та безпекою пацієнта. Дослідження показали, 

що оптимальна товщина зрізу 0.075–0.125 мм у КПКТ та 0.5–1.25 мм у КТ забезпечує найкращі результати сегментації. Доза 

опромінення також має бути ретельно скоригована: для КПКТ зазвичай достатньо 0.1–0.3 мЗв, тоді як для КТ рекомендовано 2–

5 мЗв. Значення напруги 80–100 кВ для КПКТ і 100–120 кВ для КТ допомагає зменшити артефакти затвердіння променя, 

зберігаючи контрастність. 

Однією з головних проблем у візуалізації КТ/КПКТ є наявність артефактів, включаючи розсіювальні артефакти, артефакти 

затвердіння променя, артефакти руху та часткові об’ємні артефакти. 

Цей огляд містить комплексний аналіз параметрів сканування КТ і КПКТ, узагальнює оптимальні налаштування для різних 

клінічних застосувань. Завдяки покращенню протоколів сканування та використанню сучасних методів зниження артефактів 

можна значно підвищити точність і надійність анатомічних моделей, що забезпечить кращі діагностичні та терапевтичні 

результати.  

Ключові слова: КТ; КПКТ; точність сегментації; параметри сканування; артефакти зображень; доза опромінення; артефакти 

розсіювання; артефакти затвердіння променя; артефакти руху; часткові об’ємні артефакти; металеві артефакти; кільцеві 

артефакти; шумові артефакти; алгоритми реконструкції; якість зображення; оптимізація дози; мінімізація артефактів. 
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