КЛАСИФІКАЦІЯ УРАЖЕНЬ ЛЕГЕНЬ ПРИ COVID-19 НА ОСНОВІ ТЕКСТУРНИХ ОЗНАК ТА ЗГОРТКОВОЇ НЕЙРОННОЇ МЕРЕЖІ

Автор(и)

  • О.Б. Давидько 1Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Україна
  • А.О. Ладік Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Україна
  • В.Б. Максименко Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Україна
  • М. І. Линник ДУ «Національний інститут фтизіатрії і пульмонології ім. Ф.Г. Яновського НАМН України», Україна
  • О.В. Павлов Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Україна
  • Є.А. Настенко Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Україна

DOI:

https://doi.org/10.20535/2617-8974.2021.6.231887

Анотація

Реферат Проблематика. Визначення структури ураження легеневої тканини хворих на COVID-19 по типовим ознакам «матове скло», «бруківка», «консолідація» є важливою складовою обґрунтування діагнозу та  лікувальних заходів на поточний момент терапії пацієнта. Найбільш поширеним засобом визначення стадії та типу ураження дихальних шляхів є аналіз рентген зображень та комп’ютерної томографії (КТ). Оскільки особливістю вірусної пневмонії SARS-CoV-2 є швидкий перехід від легких стадій до важких з розвитком   цитокинового шторму і розповсюдження вірусу в артеріальний кровотік, то надійний та швидкий аналіз КТ зображень легень пацієнта є запорукою прийняття своєчасних лікувальних заходів. В даній роботі розглядаються можливості застосування засобів штучного інтелекту для вирішення задачі класифікації  уражень легень при захворюванні COVID-19.

Мета. Метою роботи є створення класифікаційної системи типу уражень легень при COVID-19 по типовим ознакам «матове скло», «бруківка», «консолідація» на основі згорткової нейронної мережі CNN та текстурних ознак, джерелом яких є матриці суміжності GLCM при різних значеннях кутів напрямку аналізу.

Методика реалізації. Оскільки основою відмінностей різних типів ураження легеневої тканини на КТ зображеннях є відмінності у їх текстурних характеристиках, то в основу простору ознак класифікаційної системи  закладемо елементи гістограм на основі матриць суміжності областей інтересу КТ зображень легень. У зв’язку з високими якостями перетворення простору ознак до потреб задач класифікації згортковими шарами мережі, засобом побудови класифікатора пропонується застосувати згорткову нейронну мережу. Для навчання системи ДУ “«Національний інститут фтизіатрії і пульмонології ім. Ф.Г. Яновського НАМН України» було надано 794 КТ зрізів від 20 пацієнтів із масками зображень, на яких виділені 4714 зони інтересу з означеними типами уражень легень. Була побудована модель семишарової згорткової нейронної мережі: із чотирма згортковими шарами, після перших трьох з яких йдуть агрегувальні шари. На вхід згорткової нейронної мережі одночасно подаються текстурні ознаки двох GLCM, які були отримані із сегментованих КТ зображень під різними кутами. В якості функції втрат була використана NLLLOSS. Шар активації Softmax  визначає результат задачі класифікації.

Результати дослідження. Побудована згорткова нейронна мережа на тестовій вибірці з 472 зображень має загальну точність класифікації у 83%, на класі «матове скло» - 90,1%, «бруківки» - 70,5%,  «консолідація» – 54,2% та на робочій вибірці з 4714 ROI зображень має загальну точність у 98%, на класі «матове скло» - 98,6%, «бруківка» - 96,8%,  «консолідація» – 95,4%

Висновки. В роботі одержано модель з високою ефективністю класифікації типу уражень легень при COVID-19. Класифікатор побудовано на основі згорткової нейронної мережі та ознак текстури, джерелом яких є матриці суміжності областей інтересу КТ зображень легень.

Ключові слова – GLCM, матриця суміжності, область інтересу, комп’ютерна томографія, COVID-19, згорткова нейронна мережа, ураження легень, матове скло, бруківка, консолідація.

##submission.downloads##

Опубліковано

2021-11-17

Номер

Розділ

Статті