ВИЯВЛЕННЯ ТА КЛАСИФІКАЦІЯ ПУХЛИН МОЛОЧНОЇ ЗАЛОЗИ З ВИКОРИСТАННЯМ ГЛИБИННОГО НАВЧАННЯ

Автор(и)

  • Ольга Соколенко Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Україна https://orcid.org/0009-0007-7514-6249
  • Валентина Данілова Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», Україна https://orcid.org/0000-0003-3009-6421

DOI:

https://doi.org/10.20535/2617-8974.2023.10.281430

Анотація

За даними GLOBOCAN, рак молочної залози – це найпоширеніший вид раку серед всього населення. Серед жіночого населення він становить 24,5% від усіх випадків захворювання на рак та налічує 15,5% смертей від онкологічних захворювань. Для скринінгу на рак молочної залози найчастіше використовують мамографію. Тому проведення точного аналізу мамограм – це важлива, але складна задача. Правильність аналізу мамограм залежить від багатьох факторів: від досвіду лікаря, щільності молочних залоз, морфології та розташування пухлин. Тому для пришвидшення і покращення інтерпретації мамограм важливо використовувати комп’ютерні засоби аналізу мамограм, що допомагають у трактуванні зображення, прийнятті рішень щодо необхідності проведення додаткових обстежень та постановці діагнозу. Мета даної роботи – розробити систему для виявлення та класифікації пухлин молочної залози, засновану на глибинному навчанні. Для цього було використано модель YOLO-V4 для виявлення пухлин та модель Inception-V3 для класифікації пухлин відповідно до BI-RADS класифікації. У роботі було використаний набір даних INbreast, проведено його попередню обробку та поділено у співвідношенні 80/20 – 80% для навчання, 20% для тестування. В результаті навчання YOLO-V4 було отримано  значення точності 93%, повноти 82% і mAP 86,6%; Inception-V3 – точність 82,61%, влучність 90%, повнота 78,26%.

##submission.downloads##

Опубліковано

2023-06-22

Номер

Розділ

Статті